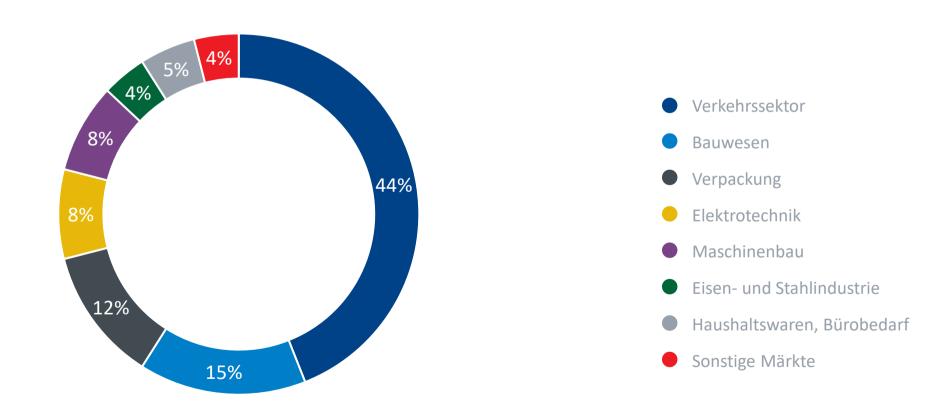
AFI Impulstreffen

Mai 2023

Schloss Pichlarn

Inhalt

- Marktdaten Deutschland
- 2. Politische Rahmenbedingungen
- 3. Roadmap 2050 Standortbestimmung der Aluminiumindustrie
- 4. Entwicklung Photovoltaik Recyclingpotenzial für Aluminium (Legierungsgruppe 6.xxx)
- 5. Kommunikationsformate AD Umweltproduktdeklarationen
- 6. Aluminium Langlebig, leicht und sicher Anwendungsbeispiele


1. Marktdaten

Absatzmärkte für Aluminiumprodukte in Deutschland

Angaben für das Gesamtjahr 2022

Produktion Aluminium in DE

in tonnes net metal | year 2022

Market Segment	year 2021	year 2022	± %
Primary Aluminium	509,200	341,200	-33
Secondary Aluminium Total	3,220,500	2,963,300	-8
thereof Recycling Aluminium Refiner	564,500	472,800	-16
thereof Recycling Aluminium Remelter	2,656,000	2,490,500	-6
Raw Aluminium Total	3,729,700	3,304,500	-11
Rolled Products	2,057,600	1,970,200	-4
Extruded Products	609,400	589,700	-3
Aluminium Semi-finished Products TOTAL	2,667,000	2,559,900	-4

2. Politische Rahmenbedingungen

Treibhausgasneutralität in DE

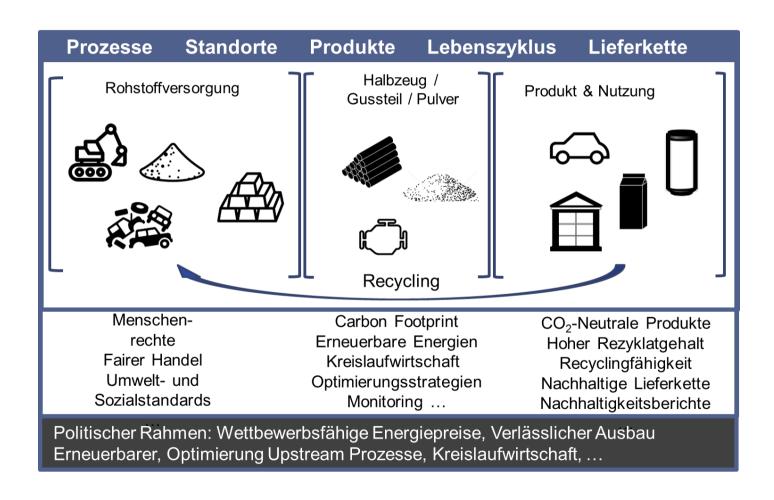
Road Map 2050 - Politik setzt Rahmenbedingungen

Handlungsfelder:

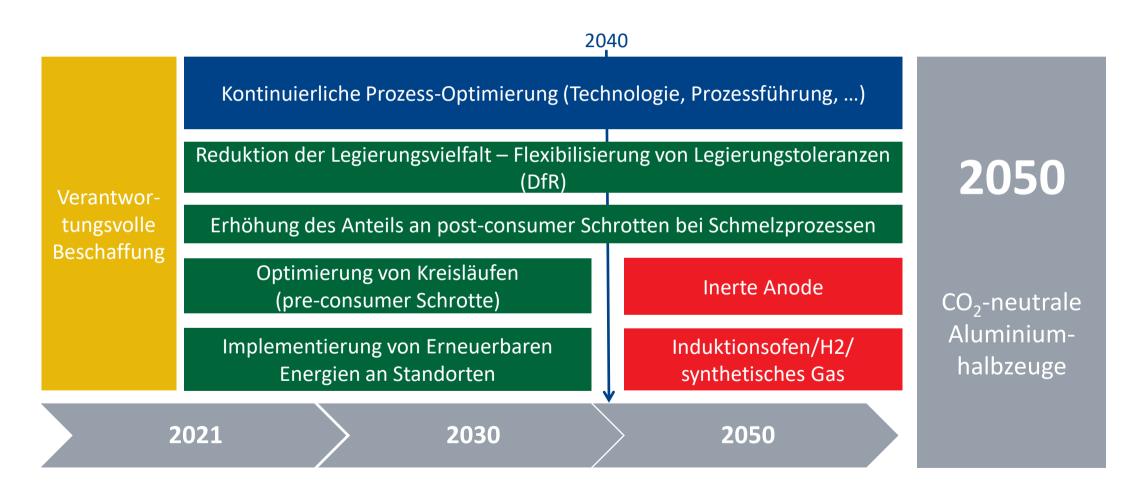
- Bauen und Wohnen
- Energie
- Industrie
- Mobilität
- Abfall und Abwasser
- Landwirtschaft

Rahmenbedingungen - Handlungsfeld - Bauen und Wohnen

- Reduzierung des Endenergiebedarfs durch Sanierungen und Modernisierungen
- Steigerung der Energieeffizienz durch Verwendung von energieeffizienten Techniken
- Substitution der fossilen Energieträger durch erneuerbare Energien
- Reduktion der Flächenneuinanspruchnahme durch flächensparendes Bauen und durch Innenentwicklung
- Steigerung des Sekundärrohstoffeinsatzes und verstärkte Materialsubstitutionen


3. Roadmap 2050

Nachhaltige Entwicklung


Anforderungen – Lieferkette Aluminium

Road Map 2050

Optimierungspotentiale

AD Road Map 2050

Forderungen an Politik

Setzen von Anreizen für Design for Recycling

Schaffung einer effizienteren Sammel- und Sortierinfrastruktur

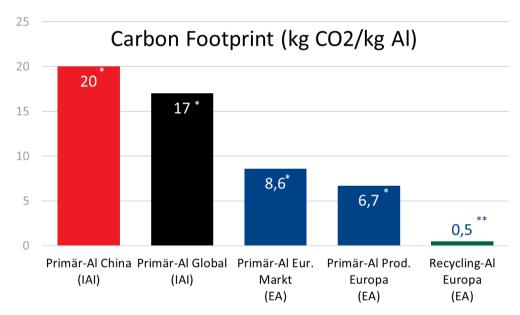
Recyclingorientierte Gesetzgebung (keine überzogene Grenzwerte)

Förderung von F&E

Unterstützung und Förderung innovativer Technologien

Umsetzung der Dekarbonisierung der Stromversorgung

Ausbau Kreislaufwirtschaft


Technologieentwicklung, Politik als Partner

Wettbewerbsfähiger Strompreis

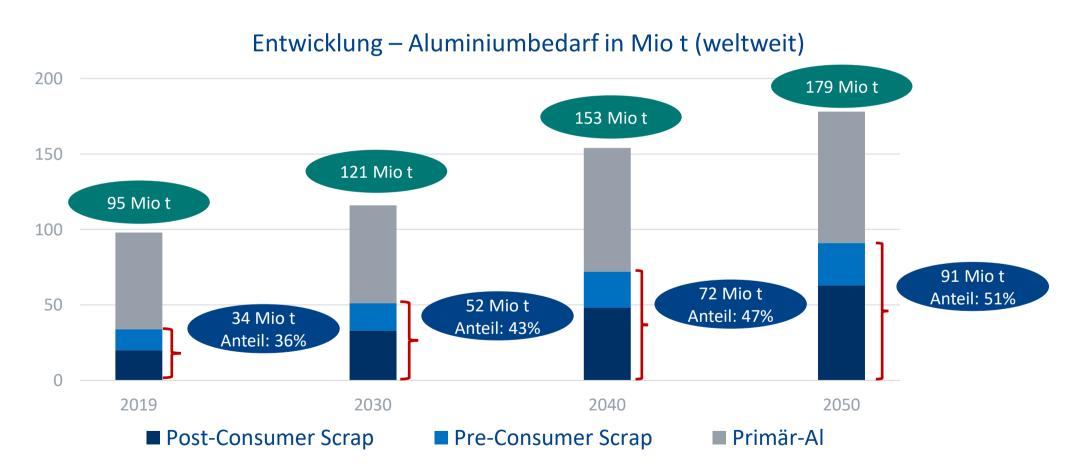
2021 > 2030 > 2050

Carbon Footprint

Beschaffung Aluminium

Schematische Darstellung bezogen auf Gewicht – * Scope 1, 2 und 3 - ** Scope 1 und 2)

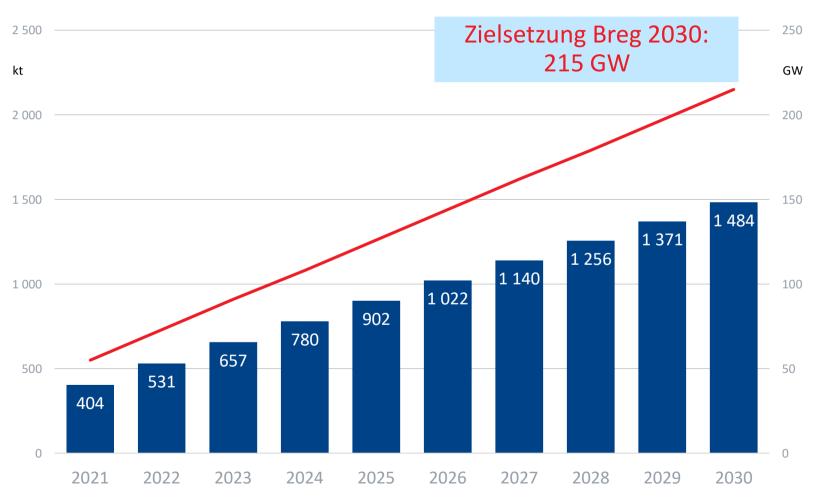
Recycling-Aluminium mit niedrigem CF



Ca. 65% der Energieversorgung der Primär-Aluminiumproduktion basiert auf fossile Brennstoffe

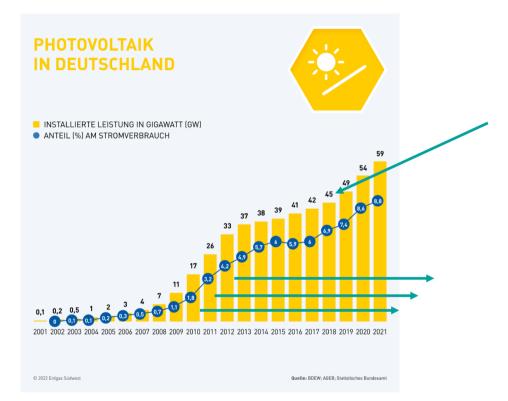
Dekarbonisierung der Lieferkette

Verfügbarkeit Schrotte


4. Potentiale

Aluminiumeinsatz in der Photovoltaik

Aluminium Deutschland


Entwicklung 2021 - 2030 in kt Aluminium

Photovoltaik in Deutschland

Recyclingpotenzial

Solar	2018	2030	2045
t Al/GW*	7500	6900	6000
Leistung in GW**	45	150	385
t Al	337.500	1.035.000	2.310.000

*Raw materials demand for wind and solar PV technologies in the transition

**Klimaneutrales Deutschland 2045

https://www.erdgas-suedwest.de/natuerlichzukunft/10-irrtuemer-solarenergie/

2018: 45 GW Leistung * 7.500 t = 337.500 t Al

Recyclinginfrastruktur Pilotprojekte

Warum Solarmodule recyclen?

"Unser Ziel ist eine grüne Energieversorgung durch Photovoltaik. Durch unser Recyclingverfahren schließen wir den Rohstoffkreislauf der Photovoltaik und schaffen damit einen wertvollen Beitrag für die Verbesserung der Ressourceneffizienz und CO2-Bilanz von Solarmodulen."

Aluminium

Aluminium befindet sich bei Solarmodulen vor allem im Rahmen und macht etwa 13 % der Masse aus. Das zurückgewonnene Aluminium kann dem herstellenden Gewerbe zugeführt werden.

Silber

Silber macht 0,07 % der Gesamtmasse des Solarmoduls aus. Dies befindet sich vor allem auf den Leiterbahnen. Nach dem Recycling kann das Silber erneut für technische Anwendung genutzt werden.

Kupfer

In den Busbars sowie den Anschlusskabeln eines Solarmoduls befindet sich mit 1% der Rohstoff Kupfer. Aus dem zurückgewonnen Kupfer können z.B. neue Kabel gefertigt

Plastik

In Solarmodulen sind verschiedene Kunststoffe verarbeitet. Die am häufigsten eingesetzten Kunststoffe sind EVA und PVF. Generell machen Kunststoffe ungefähr 8% der Gesamtmasse aus.

Silizium

Durch das Silizium wird die Strahlungsenergie des Sonnenlichts durch den photoelektrischen Effekt in elektrischen Strom umgewandelt. Das von uns zurückgewonnene Silizium wird durch unseren Partner JPM Silicon zu reinem Silizium aufbereitet.

Gla

Das Frontglas eines Solarmoduls dient zum Schutz der Zellen vor Umwelteinflüssen und macht rund 75% der Gesamtmasse aus. Durch unseren neuen Recyclingansatz gewinnen wir das Glas in hoher Reinheit zurück.

https://solar-materials.com/

5. Kommunikation

Umweltproduktdeklaration (EPD) in Kooperation mit der GSB International e.V.

Globales Erwärmungspotenzial [kg CO2-Äq.]	Aluminiumprofil Pressblank	Aluminiumprofil Anodisiert	Aluminiumprofil Pulverbeschichtet	
Produktionsstadium	8,46	10,7	8,59	
Abfallbehandlung	0,00232	0,00232	0,00232	
Wiederverwendungs-, Rückgewinnungs- oder Recyclingpotenzial	-5,51	-5,51	-5,59	
Reduktion des CO2-Äq	-65%	-52%	-65%	
	(Gesamtverband der Aluminiumindustrie e.V., 2019) ¹⁻³			

6. Anwendungsbeispiele

San Gioacchino, Rom, Italien

Architekt Raffaele Ingami, 1897

Aluminiumkuppel

- Stahlunterkonstruktion mit Aluminiumauskleidung 1,3 mm dick
- Aluminium-Innenauskleidung der Kuppel
- Aluminiumlegierung Reinheit 98,8%

Raffaele Ingami entschied sich für Aluminium, weil

- Leicht
- Langlebig
- Ökonomisch (im Vergleich zu damals üblichem Blei)

St Mary the Virgin, Warley, Essex, UK

Interior Decoration by William Reynolds-Stephens, 1902

Aluminiumapsis

- Aluminiumauskleidung mit Prägungen (Traubenblätter)
- Blattaluminium
- Aluminiumlegierung Reinheit 98,8%

William Reynolds Stevens entschied sich für Aluminium, weil

- Silberscheinend
- Licht reflektierend/hell
- Formgebung
- Design

Postsparkasse, Wien, Österreich

Architekt Otto Wagner, 1906

Aluminiumskulpturen

Gussaluminium 4,5 Meter hoch

Aluminiumnieten

 Dekorativ auf Marmortafeln (Geldspeicheroptik)

Otto Wagner entschied sich für Aluminium, weil

- Langlebig
- Dekorativ
- Reproduzierbare Bauteile
- Einfache Handhabung auf Baustelle
- Österreichische Beteiligung an Entwicklung von Aluminium (zeitgeist)

Schwansbellbrücke – Lünen – Baujahr 1956

Aluminium – standsicher und beständig

Schwansbellbrücke – Lünen – Baujahr 1956

Aluminium – standsicher und beständig

Profile und Bleche

Aufgrund des guten
Witterungsverhaltens
wurde auf eine
Beschichtung für den
Korrosionsschutz verzichtet

Letzte Prüfung der Standsicherheit: 2018

Aluminiumfassade = Image des Eigentümers

Der erste Eindruck zählt

Gold- und Silberforum, Schwäbisch Gmünd

Bauherren: Gerhard Grimminger, Cemal Isin,

Gmünder Edelmetallverband

Architekt: isin architekten Generalplaner

Projekt GmbH, Aalen,

Fassadenplanung: Ebener GmbH, Bad Marienberg

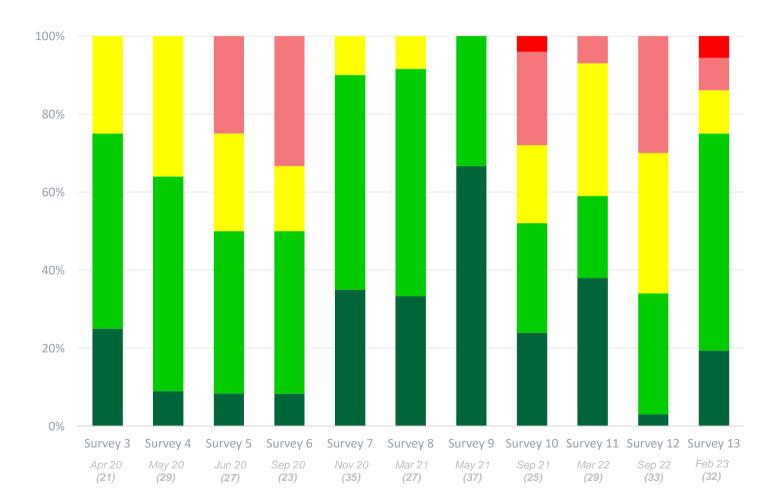
Beschichtung: HD Wahl GmbH, Jettingen-

Scheppach

Flüssiglack: Duraflon gold (ähnlich EV 3)

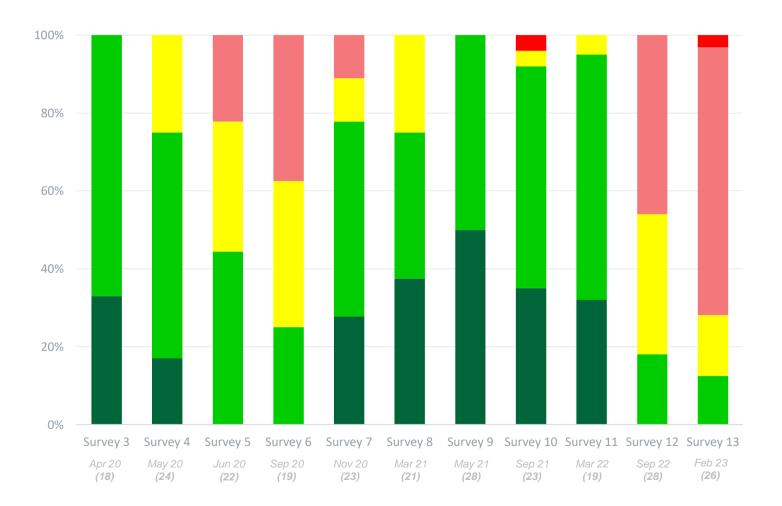
Aluminium Deutschland e. V. Fritz-Vomfelde-Straße 30 40547 Düsseldorf

Marius Baader


Marius.baader@alu-d.de Telefon +49 211 4796-163

AD Business Survey

Sector: Automotive



The values in brackets below survey 3 to 13 represent the number of answers!

- Temporary production downtime
- Strong decline
- Slight decline
- Stable
- Improvement

AD Business Survey

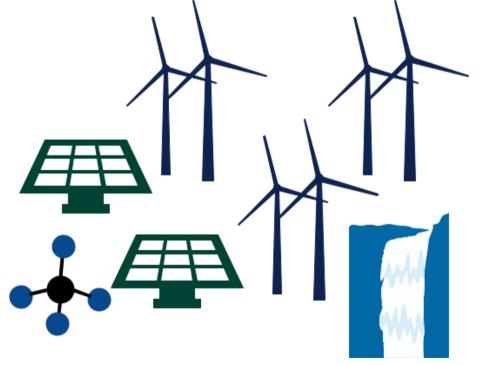
Sector: Building Construction

The values in brackets below survey 3 to 13 represent the number of answers!

- Temporary production downtime
- Strong decline
- Slight decline
- Stable
- Improvement

Energieversorgung

Zielsetzungen


Aluminium

- Ausstieg aus Kohleverstromung vor 2040
- Anteil Erneuerbarer Energieträger
 Verstromung 2050: nahezu 100 Prozent
- Reduzierung des Energiebedarfes 2050: 33

 59 Prozent (durch Hebung der Energieeffizienzpotenziale und bewusste Verhaltensmuster)
- Ausstieg aus der Brennstoffnutzung von Kohle bis 2050 (Stahl bis 2050 auf Basis von H2)

Treibhausgasneutralität in DE

Road Map 2050 - Politik setzt Rahmenbedingungen

Rahmenbedingungen - Handlungsfeld - Energie

- vor 2040: Ausstieg Kohleverstromung
- Bis 2050 Anteil EE Verstromung (Netz): nahezu 100 Prozent
- Bis 2050: Reduzierung des Energiebedarfes :
- 33 59 Prozent (durch Hebung der Energieeffizienzpotenziale und bewusste Verhaltensmuster)
- Ausstieg aus der Brennstoffnutzung von Kohle bis 2050 (Stahl bis 2050 auf Basis von H2)

Handlungsfeld - Bauen und Wohnen

- Reduzierung des Endenergiebedarfs durch Sanierungen und Modernisierungen
- Steigerung der Energieeffizienz durch Verwendung von energieeffizienten Techniken
- Substitution der fossilen Energieträger durch erneuerbare Energien
- Reduktion der Flächenneuinanspruchnahme durch flächensparendes Bauen und durch Innenentwicklung
- Steigerung des Sekundärrohstoffeinsatzes und verstärkte Materialsubstitutionen im Hoch- und Tiefbau.